LIM 202

Electronic Pressure Switch
welded, dry Stainless Steel Sensor
accuracy according to IEC 60770:
0.5 \% FSO

Nominal pressure

from 0 ... 6 bar up to $0 \ldots 600$ bar

Contacts

1, 2 or 4 independent PNP contacts, freely configurable

Analogue output

2-wire: 4 ... 20 mA
3-wire: $4 \ldots 20 \mathrm{~mA} / 0 \ldots 10 \mathrm{~V}$
others on request

Special characteristics

- indication of measured values on a 4-digit LED display
- rotatable and configurable display module

Optional versions

- IS-version Ex ia = intrinsically safe for gases
- oxygen application
- customer specific versions

The electronic pressure switch LIM 202 is the successful combination of

- robust pressure transmitter
- digital display
and has been specially designed for numerous applications in various industrial sectors.

As standard the LIM 202 offers a PNP contact and a rotatable display module with 4-digit LED display. The transmitters are suitable for an unrestricted use in oxygen applications up to 600 bar and an intrinsically safe IS-Version.

Preferred areas of use are

Medical Technology

Plant and Machine Engineering

Refrigeration

02 Oxygen application

Input pressure range												
Nominal pressure gauge	[bar]	6	10	16	25	40	60	100	160	250	400	600
Overpressure	[bar]	14	35	35	70	140	140	350	350	700	1200	1200
Burst pressure \geq	[bar]	35	85	85	175	350	350	850	850	1750	2800	2800
Vacuum resistance		unlimited										

Contact ${ }^{1}$

Number, type	standard: 1 PNP contact option: 2 independent PNP contacts 4 independent PNP contacts (nossible with M12x1 8 -pin for $4 \ldots 20 \mathrm{~mA} / 3$-wire)
Max. switching current	$4 \ldots 20 \mathrm{~mA} / 2$ - and 3 -wire: contact rating 125 mA , short-circuit resistant; $\mathrm{V}_{\text {switch }}=\mathrm{V}_{\mathrm{s}}-2 \mathrm{~V}$ 0 ... $10 \mathrm{~V} / 3$-wire: \quad contact rating 125 mA , short-circuit resistant
Accuracy of contacts ${ }^{2}$	$\leq \pm 0.5 \%$ FSO
Repeatability	$\leq \pm 0.1 \%$ FSO
Switching frequency	max. 10 Hz
Switching cycles	$>100 \times 10^{6}$
Delay time	$0 \ldots 100 \mathrm{sec}$
${ }^{1}$ with IS-protection max. 1 contact possible	
Analogue output (optionally) / Supply	
2-wire current signal	$4 \ldots 20 \mathrm{~mA} / \mathrm{V}_{\mathrm{S}}=13 \ldots 36 \mathrm{~V}_{\mathrm{DC}}$ permissible load: $R_{\max }=\left[\left(V_{S}-V_{S \text { min }}\right) / 0.02 \mathrm{~A}\right] \Omega \quad$ response time: $<10 \mathrm{msec}$
2-wire current signal with IS-protection	$4 \ldots 20 \mathrm{~mA} / \mathrm{V}_{\mathrm{S}}=15 \ldots 28 \mathrm{~V}_{\mathrm{DC}}$ permissible load: $R_{\max }=\left[\left(V_{S}-V_{S \text { min }}\right) / 0.02 \mathrm{~A}\right] \Omega$ response time: < 10 msec
3 -wire current signal	$4 \ldots 20 \mathrm{~mA} / \mathrm{V}_{\mathrm{S}}=19 \ldots 30 \mathrm{~V}_{\mathrm{DC}} \quad$ permissible load: $\mathrm{R}_{\max }=500 \mathrm{k} \Omega$ adjustable (turn-down of span up to $1: 5$) ${ }^{3}$
3 -wire voltage signal	$0 \ldots 10 \mathrm{~V} / \mathrm{V}_{S}=15 \ldots 36 \mathrm{~V}_{\mathrm{DC}} \quad$ permissible load: $\mathrm{R}_{\text {min }}=10 \mathrm{k} \Omega$
without analogue output	$\mathrm{V}_{\mathrm{S}}=15 \ldots 36 \mathrm{~V}_{\mathrm{DC}}$
Accuracy ${ }^{2}$	$\leq \pm 0.5 \%$ FSO

${ }^{2}$ accuracy according to IEC 60770 - limit point adjustment (non-linearity, hysteresis, repeatability)
${ }^{3}$ with turn-down of span the analogue signal is adjusted automatically to the new measuring range
Thermal effects (Offset and Span)

Thermal error	± 0.3 \% FSO / 10 K
in compensated range	$0 \ldots 70{ }^{\circ} \mathrm{C}$
Permissible temperatures	
Permissible temperatures	medium: $-40 \ldots 125^{\circ} \mathrm{C}$ electronics / environment: $-40 \ldots 85^{\circ} \mathrm{C}$ storage: $-40 \ldots 100^{\circ} \mathrm{C}$
Electrical protection	
Short-circuit protection	permanent
Reverse polarity protection	no damage, but also no function
Electromagnetic compatibility	emission and immunity according to EN 61326
Mechanical stability	
Vibration	$10 \mathrm{~g} \mathrm{RMS}(25 . . .2000 \mathrm{~Hz})$ according to DIN EN 60068-2-6
Shock	$500 \mathrm{~g} / 1 \mathrm{msec}$ according to DIN EN 60068-2-27
Materials	
Pressure port	stainless steel 1.4571 (316 Ti)
Housing	stainless steel 1.4404 (316 L)
Display housing	PA 6.6, polycarbonate
Seals (media wetted)	none (welded)
Diaphragm	stainless steel 1.4542 (17-4PH)
Media wetted parts	pressure port, diaphragm
Explosion protection (only for $4 . . .20 \mathrm{~mA} / 2-$ 2ire)	
Approval AX14-DS 202	IBExU 06 ATEX 1050 X Zone 1: II 2G Ex ia IIC T4 Gb (connector) / II 2G Ex ia IIB T4 Gb (cable)
Safety technical maximum values	$\mathrm{U}_{\mathrm{i}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{i}}=93 \mathrm{~mA}, \mathrm{P}_{\mathrm{i}}=660 \mathrm{~mW}, \mathrm{C}_{\mathrm{i}} \approx 0 \mathrm{nF}, \mathrm{L}_{\mathrm{i}} \approx 0 \mu \mathrm{H}$
Max. switching current ${ }^{4}$	70 mA (max. permissible inductivity: 4.7 mH)
Permissible temperatures for environment	$-25 \ldots 70{ }^{\circ} \mathrm{C}$
Connecting cables (by factory)	cable capacitance: signal line/shield also signal line/signal line: $100 \mathrm{pF} / \mathrm{m}$ cable inductance: signal line/shield also signal line/signal line: $1 \mu \mathrm{H} / \mathrm{m}$

Mechanical connections (dimensions in mm)

standard
option

G1/2" EN 837

G1/4" EN 837

1/4" NPT

